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ABSTRACT
Let D be a finite dimensional division algebra. It is known that in a
variety of cases, questions about the normal subgroup structure of D*
(the multiplicative group of D) can be reduced to questions about finite
quotients of DX. In this paper we prove that when deg(/)) = 3, finite
quotients of D* are solvable. The proof uses Wedderburn’s Factorization
Theorem.

0. Introduction

In this paper D is a finite dimensional division algebra over its center F := Z(D).
Recall that the degree of D is the square root of the dimension of D as a vector
space over F. We denote by D> (resp. F*) the multiplicative group of D (resp.
F). The purpose of this paper is to prove the following theorem.
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MAIN THEOREM: Let D be a finite dimensional division algebra of degree 3 over
its center F':= Z(D). Let N be a normal subgroup of D* containing F* such
that H := D* /N is finite. Then
(1) Let z € H and let y € Ny({(z)). If ged(|y|,3) = 1, then y € Cy(x), and if
ged(|z],3) = 1, then y* € Cy(z), where |h| is the order of h. In particular,
(2) Let Inv(H) be the set of involutions of H. Then (Inv(H)) is elementary
abelian. Hence
(3) H/O2(H) has odd order and hence H is solvable.

We mention that the proof of the Main Theorem is basically self-contained,
except the conclusion that H is solvable, which relies on the Feit~Thompson Odd
Order Theorem. We also prove the following general lemma.

LEMMA 1: Let D be a finite dimensional division algebra of degree n over its
center F := Z(D). Let N be a normal subgroup of D* containing F* and let
H := D*/N. Then Z(H) is of exponent n, in particular, H/(H, H| is of exponent
n.

Note that in Lemma 1, H is not necessarily finite. Lemma 1 is an immediate
consequence of Wedderburn’s Factorization Theorem, which is also useful in the
proof of the Main Theorem and seems quite useful in connecting the multiplicative
structure with the additive structure of D.

As is well known (see [1], Cor. 20, p. 334, or [7], 14.4.1, p. 239), the multi-
plicative group of D (noncommutative) is never solvable. Further, by a theorem
of Margulis and Prasad (see [4], Thm. 9.8 p. 516), if F' is a number field, then
any noncentral normal subgroup of D* has finite index.

Not much is known about the structure of the multiplicative group of a division
algebra. Thus any result in this area seems worthwhile; in particular, resuits
on the structure of D* are related to the Margulis-Platonov conjecture on the
normal subgroup structure of algebraic groups over number fields (see [8] and

[9D)-

1. Notation and preliminaries

All through this paper D is a finite dimensional division algebra over its center
F := Z(D). Let D* = D~{0} and G = D* be the multiplicative group of
D. We set F* = F~{0}. We let N be a normal subgroup of G such that
F* < N and G/N is finite. We use the following notational convention. We
denote G* = G/N and, for ¢ € G, we let a* denote its image in G* under the
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canonical homomorphism, that is a* = Na. If H* is a subgroup of G*, then by
convention, H < (5 is the full inverse image of H* in G.

(1.1) Remark: Note that since F* < N,foralla € Gand a € F*, (aa)® =a”.
We'll use this fact without further reference.

(1.2) NOTATION FOR GROUPS. Let H be a group. For r,y € H, z¥ = vy lzy

and [z,y] = 271y 'xy. For asubset S . H, (S) denotes the subgroup generated
by S. For subgroups X,Y < H, [X,Y] = ([z,y]: z € X and y € Y). Recall that
if H is finite and p is a prime, O,(H) is the largest normal p-subgroup of H. We
denote by Inv(H) the set of involutions of H (i.e., elements 1 # h € H such that
h? =1). Given h € H, we denote by |h| the order of h. Finally, recall that if H
is a finite p-group (p a prime), then Qy(H) = (h € H : |h| =p).

(1.3) NOTATION FOR ALGEBRAS. Given z,y € D, we denote by [z,y] their

additive commutator, that is [z,y] = zy — yz.
Let a € D~ F. We let [a, D] = {[a,d} : d € D}, [a,D]* = [a, D] ~{0}, and

a) = {al®=)™" la. 2] € [a, D]*}.
We denote by m,(A) € F[A] the (monic) minimal polynomial of a over F. We let
v: D* — F*

be the reduced norm.

Below we collect a number of preliminary results. These results are well known
and appear in [10]. See also [3], [5] and [6]. We include proofs for the sake of
completeness. In what follows A is a commutative indeterminate over D. We
consider polynomials in D[A] written as “left polynomials”, i.e., in the form
5" d; )\ for d; € D; if f,g are polynomials we say that g divides f if f = hg, for
some h in D[Al. Also, given f = 5 d;\* in D)), we write f(d) for 3 d;d', i.e.,

“right substitution” for d.

(1.4): Let f(A),g9(A) € D|A] andd € D. Then

(1) (f +9)(d) = f(d) + g(d).
(2) If f = > d;\', then (fg)(d) = 3_dig(d)
(3) If g(d) commutes with d, then (fo)(d) = f(d)g(d).

Proof: (1) is obvious. For (2) note that if f = 3 d;A!, then fg=>dig(x
(because A is a commutative indeterminate). By (1), (fg)(d) = >_ d:(g(N) /\’)( )
= 5" d;g(d)d’. Now if g(d) commutes with d, then

(d) =) dig(d)d =) did'g(d) = f(d)g(d). W
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(1.5): Given f € D[} and d € D, we have

fQ) =g\ (A - d) + f(d).

In particular, d is a root of f iff A\ — d divides f.

Proof: By induction on deg(f). If f = a)\+b, then f =a(A—d) +ad+ b=
a(A — d) + f(d), so take ¢ = a. Suppose deg(f) = m > 1 and let d,, be the
leading coefficient of f. Set g = f — dpA™ (A — d). Then deg g < deg f,
so by induction there exists g1 € D[A] such that g = g:(A — d) + g(d). Hence
f=dnA™ Y (A = d) = ¢1(A — d) + g(d). Note now that by 1.4.2, g(d) = f(d) and
hence we get f = (q1 + dA™ 1) (A — d) + f(d). |

(1.6): Let f € D[\ and suppose f = hg, forsomeh,g € D[)]. Put f = h()\)g(d);
then f(d) = f(d).

Proof: This is obvious; write h = Y d;\?, then f = Y dig(d)N?, so f(d) =
S dig(d)d: = f(d), by 1L.42. B

(1.7) (Wedderburn): Let f € D|)] and suppose f = hg, for some h,g € D[A].
Let d € D and suppose d is a root of f but not of g. Then g(d)dg{d)~? is a root
of h.

Proof: Let f = h()\)g(d). Then, by 1.6, d is a root of f, so, by 1.5, A —d divides
f. It follows that A\ — g(d)dg(d)~* divides g(d)fg(d)~* = g(d)h(}\), and hence it
divides h. n

(1.8) COROLLARY: Let f(A) € F|A] and let a € D be a root of f. Let b € I'(a);
then f = h(A)(A = b)(A — a).

Proof: Write b = al*=1™" | for some [a,z] € [a,D]*. Set f = g(A)(A — a).
Let d = a® ; then d is a root f distinct from a. By 1.7, (d— a)d(d — a)™?!
is a root of g(A). But d —a = a® —a = zaz~' —a = [z,a]z~!. Thus

(d—a)d(d—a)"! = [z,a)z" zaz1z[T,0a] ! = aleal™ = glazl™t 1

(1.9) Remark: We mention that by Prop. 1.1 in (3], given a € DN F, T'(a) is
the set of all elements b € D such that mg(A) = A(A)(A — b)(A — a).

(1.10): Let a,b € D, with v := [a,b] # 0. Then vav~! = b, iff a + b commutes
with ba.

Proof: vav™! = b iff va = bv iff (ab - ba)a = b(ab — ba) iff aba — ba® = bab— b%a
iff aba + b%a = bab + ba? iff (a + b)ba = ba(a + b) as asserted. |
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(1.11): Supposedeg(D) = 3 and let f = (A—d3)(A—d2)(A—d;) € F[\]. Suppose
v := [dy,d2] # 0. Then

(1) {di,d;] € {v,—v} for alli,j € {1,2,3}, with ¢ # j.

(2) vdiv™! = ds, vdav™! = dz and vdzv~! = d;.

(3) v} e F.

Proof: For (1), note that d; + dz + d3 = « € F. Suppose i = 1. Then we may
assume j = 3 and then [d,d3] = [d1, @ — di — d2] = [dy, —dz] = —v. A similar
argument works if (i, j) = (2, 3).

Next, since f € F[/\], dzdady = dydzdys = dodids € F and dy +da +d3 € F.
Thus d;d; commutes with d;+d;, for (4,7) € {(1,2),(2,3),(3,1)}. Thus by (1.10)
and (1), (2) holds. (3) follows from the fact that v* commutes with d;,d; and
d3, so v* € F(dy) N F(dy) = F. [ |

(1.12): Let a € D F be a separable element. Let x € F(a), with F(z) = F(a).
Then

(1) D =Cpl(a) D [a, D].

(2) [a,D] =[x, D].

Proof:  (1): For every w € D, with [a,w] # 0, we know that alew)™ ¢ ['(a)
(see 1.3 and 1.9). Since the minimal polynomial of a is separable, Theorem 4.3
in 3] implies that [a,w] ¢ Cp(a). Hence Cp(a) N [a, D] = 0, which implies (1),
since dim{(Cp(a)) + dim({a, D]) = dim(D).

(2): Notice that Cp(a) = Cp(F(a)) = Cp(F(z)) = Cplxz). We show that
for all w € D, {a,w] € [z, D], the lemma follows from symmetry. Now by (1),
w = ¢+ [z,d], for some ¢ € Cp(a) and d € D. Thus, [a.w] = [a.c + [z,d]] =
[a, [z, d]]. But. by the Jacobi identity, [a,z.d] + [x,d,a] + [d,e,z] = 0. Since
[a,z] = 0. we get that [a, w] = [a,[z,d]] = [d.a.z] € |z, D] as asserted. |

2. The proof of the Main Theorem and Lemma 1

We continue the notation and hypotheses of Section 1. In addition, unless
otherwise specified, we assume here that deg(D) = 3. We start with

(2.1): Let a € G~ N and let II* = Cg-(a*). If [a, D) H # 0, then |a*| = 3.
Proof: Let [a,d] € [a. D] N H. Let b= ale4™" Then
ma(A)=(A=c)(A=b)(A—a), forsomeceG

and, by 2.2.1 (ahead), there exists v € G such that ¢* = b, b* = @ and a = c.
Note that a* = b* and hence ¢* = (a*)*" = (b*)*" = a*. Thus, a* = b* = ¢*.
But cba € F, so (a*)® = c*ba* = 1*, and the lemma holds. 1
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(2.2): Let a € GNN, [a,x] € [a. D]* and sct b := al*=1™" | ¢ := v(a)a="bp~".
Then
(1) There exists 1 # v € G such that v® € F(a), ¢’ = b, b¥ = a, a¥ = ¢ and
v~ '[a, 1] € F(a).
(2) If (a*)1a=" € (a*), then [a,z]* induces an automorphism of order 1 or 3
on {a*); and if [a,z]* € Cg-(a*), then (a*)? = 1*.

Proof: Since b € I'(a) (sec 1.3 and 1.9), there exists ¢ € D such that m,()\) =
(A —c)(A=b) (A —a). Thus c = v(a)a~'b~'. If [a,b] # 0, then take v := [a,b],
and (1) holds by 1.11. So suppose [a,b] = 0. Let v := [a,z]. Now b is another
root of mq(A) in F(a), so b*”" is also such a root and necessarily b* " = ¢ and
"' = a. Then, since a*’ =a. 1% € F(a). This shows (1).

Assume the hypothesis of (2). Notice that by (1), [a,z]* induces an auto-
morphism of order 1 or 3 on {(a¢*} and, if [a,z]* induces an automorphism of

order 1 on {(a*), then, by 2.1, (a*)3 = 1*. |

(2.3) THEOREM: Let a®,y" € G* with y* € Ng-({a")). Suppose y*a*(y*)~! =
(@*)*, with 1 < k < |a’|. Then

(1) Ifk #1, then ((a*)c~Hled” = ((@)* 1) € ((a*)*71).

(2) If there exists a prime p # 3 such that |a*| = p* and |y*| = p™, then

y* € Cg-(a”).

(3) If |a*| = p is a prime, then (y*)® € Cg-(a*).

(4) If ged(|y*],3) =1, then y* € Cg-(a*).

(5) If ged(]a*|,3) = 1. then (y*)3 € Cg-(a*).

Proof: Of course we may assume that
(i) y" ¢ Cg-(a”)
and hence [a,y] # 0 and

(i) (a* )1 # 17,

Next, [y,a] = (yay~'a™' — )ay. Note now that (yay~'a™1)* = (a*)*!, so
since (yay~'a~! — 1) centralizes yay~'a!, in G, (yay~'a~! — 1)* centralizes
(yay~'a=1)* = (a*)*~! and it follows that ((a*)=")le¥]" = ((@*)k=1)¥". This
shows (1).

Assume the hypothesis of (2). If a is inseparable over F. then [a*| = 3, a
contradiction. Thus « is separable over F. Since a*~1 ¢ F, [a, D] = [a*~", D],

by 1.12. So [a,y] = [a*~1, 2], for some z € D and then, by 2.2.2, cither [a,y]* =
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[a*~1,2]* induces an automorphism of order 3 on ((a*)*~"). or (a*)*~13 = 1~

k=1y "this implies that 3 divides

k-1 _

In the first case, since [a. y]* acts like * on {{a*)
ly*|. contradicting p # 3. In the second case, since p # 3, we get that (a*)
1*, but 1 < &k < |a*|. a contradiction.

Assume now that |a*| = p is a prime. Notice that (1) implics that

Wlovl” syy"

(1ii) a =(a")¥ .

By 2.2.2 and (i). y* induces an automorphisin of order 3 on (¢*) as asserted.
For the proof of (4) and (5) we may assume without loss that |a*| = pt and

y*| = ™. for some primes p and r. If 1 = p, then both in (1) and (5). r = p # 3,
so by (2). y* € C¢-(a”) contradicting (1). Hence we may assume that r # p. Thus
in both cases by (3). (y*)® € Cg- (21 ({(a*))). By [2], 24.3. p. 113, (y°)% € Ci-(a*)
and (5) is proved. If. in addition, r # 3. then y* € Cg-(a”) and (4) is proved.
]

(2.4) CoroLLARY: (1) Let s*.t" € Inv(G*) with t* # s*. Then s°t* € Inv(G").
(2) Inv(G*) C OG").

Proof:  Suppose |s°7] > 2 and set a := st. Since |a*| > 2,
t* € Ng-({a*)) ~Cg-(a”)

and [t*] = 2. contradicting 2.3.4. This shows part (1} of the corollary. Part (2)
is immediate from part (1). ]

We now prove the Main Theorem. Part (1) of the Main Theorem is 2.3.4
and 2.3.5. Part (2) of the Main Theorem is 2.4.1. Note now that for any N <
M aG. G /M satisties all our hypotheses for G* and hence, by 2.4.2, Inv(G /M) C
O.(G/M ). This implies that for any normal subgroup Af* < G*. Inv(G* /M) C
O2(G* /M), In particular. this holds for A* = 012(G*), so 7 /O2(G*) has odd
order and this completes the proof of the Main Theorem. |

We now prove Lenuna 1. So here we drop the assumption that deg(D) = 3
and the assumption that G* is finite. Let a € G. with a® € Z(G*). Then by
Wedderburn’s Factorization Theorem (sce [10] or Theorem 0.4, p. 181 in [5]).
me(A) = (A- dn)(A = dy21)--- (A = dy), where m = deg(a). d) = a and d,
are conjugates of @ in G. 1 < i < m. Thus d; are conjugates of @™ in G*. so
since a* € Z(G*). d} = a® for all i. Since [_],':m d, € F*. (a*)™ = 1° and, as
m|deg(D}, Lemma 1 holds. ]
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The ‘in particular’ part of Lemma 1 is immediate since, if N < M <G is
such that M/N = [H,H], then M satisfies the hypotheses of Lemma 1 and
G/M ~ H/[H, H] is abelain. 1
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