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ABSTRACT 

Let D be a finite dimensional division algebra. It is known tha t  in a 

variety of cases, questions about  the normal subgroup s t ructure  of D • 

(the multiplicative group of D) can be reduced to questions about  finite 

quotients of D • In this paper we prove that. when deg(])) = 3, finite 

quotients of D x are solvable. The proof uses Wedderburn 's  Factorization 

Theorem. 

O. I n t r o d u c t i o n  

In this paper D is a finite dimensional division algebra over its center F := Z(D) .  

Recall that  the degree of D is the square root of the dimension of D as a vector 

space over F. We denote by D • (resp. F • the multiplicative group of D (resp. 

F).  The purpose of this paper  is to prove the following theorem. 
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MAIN THEO:~EM: Let Z) be a t~nite dimensional division algebra of degree 3 over 

its center F := Z(D).  Let N be a normal subgroup of D • F x such 

that H := D• / N  is finite. Then 

(1) Let x E H and let y e NH((X)). Ifgcd(lyl,3) = 1, then y ~ CH(X), and if  

gcd(Ixl, 3) = 1, then y3 E CH(x), where Ihl is the order ofh.  In particular, 

(2) Let Inv(H) be the set of involutions of H. Then (Inv(H)) is elementary 

abelian. He~2ce 

(3) H/O2(H)  has odd order and hence H is solvable. 

We mention that  the proof of the Main Theorem is basically self-contained, 

except the conclusion that H is solvable, which relies on the Felt-Thompson Odd 

Order Theorem. We also prove the following general lemma. 

LEMMA 1: Let D be a ~nite dimensional division algebra o[ degree n over its 

center F :-- Z(D) .  Let N be a normal subgroup o l D  x containing F x and let 

H := D x / N .  Then Z(H)  is of exponent n, in particular, H/[H, H] is of exponent 

n .  

Note that  in Lemma 1, H is not necessarily finite. Lemma 1 is an immediate 

consequence of Wedderburn's Factorization Theorem, which is also useful in the 

proof of the Main Theorem and seems quite useful in connecting the multiplicative 

structure with the additive structure of D. 

As is well known (see [1], Cor. 20, p. 334, or [7], 14.4.1, p. 239), the multi- 

plicative group of D (noncommutative) is never solvable. F~rther, by a theorem 

of Margutis and Prasad (see [4], Thm. 9.8, p. 516), if F is a number field, then 

any noncentral normal subgroup of D • has finite index. 

Not much is known about the structure of the multiplicative group of a division 

algebra. Thus any result in this area seems worthwhile; in particular, results 

on the structure of D x are related to the Margulis-Platonov conjecture on the 

normal subgroup structure of algebraic groups over number fields (see [8] and 

[9]). 

1. N o t a t i o n  a n d  p r e l im ina r i e s  

All through this paper D is a finite dimensional division algebra over its center 

F := Z(D) .  Let D x = D \{0}  and G = D • be the multiplicative group of 

D. We set F x -- F \ { 0 } .  We let N be a normal subgroup of G such that  

F x _< N and G / N  is finite. We use the following notational convention. We 

denote G* = G / N  and, for a E G, we let a* denote its image in G* under the 



Vol. 111, 1999 FINITE QUOTIENTS 375 

canonical homomorphism, that is a* = Na. If H* is a subgroup of G*, then by 

convention, H _< (,~ is the full inverse image of H* in G. 

(1.1) Remark: Note t h a t s i n c c F  • <_ N, f o r a l l a E G a n d a E F  • (aa)* =a*. 

We'll use this fact without further reference. 

(1.2) NOTATION FOR GROUPS. Let H be a group. For x ,y  E H, x y = y - l x y  

and Ix, y] = x - l y  lxy. For a subset S (; H, (S) denotes the subgroup generated 

by S. For subgroups X, Y _< H, [X, Y] = ([x, y]: x e X and y �9 Y). Recall that 

if H is finite and p is a prime, Op(H) is the largest normal p-subgroup of H. We 

denote by Inv(H) the set of involutions of H (i.e., elements 1 :fi h �9 H such that 

h 2 = 1). Given h �9 H, we denote by Ihl the order of h. Finally, recall that if H 

is a finite p-group (p a prime), then ~ I (H)  = (h �9 H :lhl = p). 

(1.3) NOTATION FOR ALGEBRAS. Given x ,y  �9 D, we denote by [x,y~ their 

additive commutator, that is Ix, Yl = xy - yx. 

Let a �9 D \ F. We let [a,D] = {Ia, d] :  d �9 D}, Ia, D] • = [a, D] "-{0}, and 

F(a) = {ala 'x l - ' :  [a, xl �9 [a,D] • 

We denote by rna(A) �9 F[A] the (monic) minimal polynomial of a over F. We let 

v: D • -+ F x 

be the reduced norm. 

Below we collect a number of preliminary results. These results are well known 

and appear in [10]. See also [3], [5] and [6]. We include proofs for the sake of 

completeness. In what follows A is a commutative indeterminate over D. We 

consider polynomials in D[A] written as "left polynomials", i.e., in the form 

~ d , M  for di �9 D; if f , g  are polynomials we say that g divides f if f = h.q, for 

some h in D[~]. Also, given f = E dim in D[A!, we write f (d)  for E di di, i.e., 

"right substitution" for d. 

(1.4): Let f (A),g(A) �9 D[)q and d �9 D. Then 

(1) ( f  + g)(d) =- f (d)  + g(d). 
(2) I f  f = E d ,  M, then (fg)(d) = E d ,  g(d)d i. 

(3) I f  g(d) commutes with d, then (f.q)(d) = f(d)g(d).  

Proof." (1) is obvious. For (2) note that if f = ~ d i ) 0 ,  then f g  = Y~dig(,~),V 

(because ,~ is a commutative indeterminate). By (1), ( fg)(d) = ~ di(g(,~),V)(d) 

= y~ dig(d)d i. Now if g(d) commutes with d, then 

( fg)(d)  = E dig(d)di = E didig(d) = f(d)g(d).  | 
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(1.5):  Given f �9 D[.X] and d �9 D, we have 

f(A) = q(A)(A - d) + f ( d ) .  

In particular, d is a root o f  f iff )~ - d divides f . 

Proo~ By induction o n d e g ( f ) .  I f f  = a A + b ,  then f = a ( A - d ) + a d + b =  

a ( ) ~ - d ) + f ( d ) ,  so take q = a. S u p p o s e d e g ( f )  = m > 1 and let dm be the 

leading coefficient of  f .  Set g = f - dm)C~-l(/~ - d). Then  deg g < d e g f ,  

so by induct ion there  exists q~ E D[,~] such tha t  g = ql(;~ - d) + g(d). Hence 

f - d,~,~m-1 (A - d) = ql(-~ - d) +g(d) .  Note now tha t  by 1.4.2, g(d) = f ( d )  and 

hence we get f = (ql + dm)~m-1)(A - d) + f (d ) .  | 

(1.6):  Let  f e DIAl and suppose f = hg, for some h, g e D[A]. P u t  f = h(A)g(d); 

then f ( d )  = f (d ) .  

Proof." This  is obvious; write h = ~ d i A  i, then  f = ~ d i g ( d ) A  ~, so f ( d )  = 

dig(d)d i = f (d ) ,  by 1.4.2. | 

(1 .7)  (Wedderburn) :  Let  f e D[,~] and  suppose f = hg, for some h ,g  e D[),]. 

Let  d E D and  suppose d is a root o f f  but  not  o f  g. Then  g(d)dg(d) -~ is a root 

o f  h. 

Proof'. Let  f = h()~)g(d). Then,  by 1.6, d is a root of f ,  so, by 1.5, ,~ - d divides 

f .  I t  follows tha t  )~ - g(d)dg(d) -1 .divides g(d) fg (d )  -1 = g(d)h(,~), and hence it 

divides h. | 

(1.8) COROLLARY: Let  f(A) �9 F[A] and let a �9 D be a root  o f f .  Let  b �9 r(a); 
then f = h()~)()~ - b)(A - a). 

Proof: Write  b = a [a'xl-1, for some [a ,x]  �9 ia, D]  • Set f = g ( A ) ( ) ~ - a ) .  

Let  d = a*-~; then d i s  a f o o t  f distinct from a. By 1.7, ( d - a ) d ( d - a )  -1 

is a root  of g()~). But  d - a  = a x-~ - a  = xax  - 1 - a  = ix, a]x -1. Thus  
(d - a)d(d - a) -1 = iX, a ~ x - l x a z - l x i x ,  a~ -1  = a {x'a]-' = alL,z]-'. | 

(1.9) Remark:  We ment ion  tha t  by Prop.  1.1 in [3], given a �9 D \ F, r(a) is 

the  set of all e lements  b �9 D such tha t  ma(A) = h(A)()~ - b)(), - a). 

(1 .10):  Le t  a,b �9 D,  with v := Ha, b] # O. Then  vav -1 = b, i f f  a + b commutes  

with ba. 

Proof." vav  -1 = b iff va = bv iff (ab - ba)a = b(ab - ba) iff aba - ba 2 =bab  - b2a 

iff aba + b2a =bab  + ba 2 iff (a + b)ba = ba(a + b) as asserted. | 
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(1.11):  Supposedeg(D) = 3 and let f = ( A - d 3 ) ( A - d 2 ) ( A - d l )  E F[A]. Suppose 

v := Idl ,d2]  # 0. Tben 

(1) [di,dj] E { v , - v }  for all i , j  e {1,2,3},  with i # j .  

(2) vdlv - I  = d2, vd2v -1 = d3 and vd3 v-1 = dx. 

(3) v 3 C F.  

Proof: For (1), note tha t  di + d2 + d3 = a C F.  Suppose i = 1. Then  we may 

assume j = 3 and then Idl, d3] = Idl,o~ - d l  - d2] = l d l , - d 2 ]  = - v .  A similar 

a rgument  works if ( i , j )  = (2, 3). 

Next,  since f E F[)~], d3d2ds = dld3d2 = d2dld3 E F and dl + d2 + d3 C F.  

Thus  djd, cominutes  with d,+d3, for ( i , j )  �9 {(1,2), (2,3), (3, 1)}. Thus  by (1.10) 

and (1), (2) holds. (3) follows from the fact tha t  v 3 commutes  with dl,d2 and 

d3, so v 3 �9 F(di)  A F(d2) = F. | 

(1.12):  Let a �9 D \ F be a separable element. Let x �9 F(a) ,  with F(x)  = F(a). 

Then 

(1) D = CD(a) �9 Ia, DI. 

(2) Ia, D~ = Ix, D].  

Proof'. (1): For every w �9 D, with [a,w~ # O, we know tha t  a 1~'~1-' �9 F(a) 

(see 1.3 and 1.9). Since the minimal  polynonfial of a is separable,  Theorem 4.3 

in [3] implies tha t  Ia, w~ ~ Ct)(a). Hence CD(a) N la, D] = 0, which implies (1), 

since dim(CD(a)) + d im(Ia  , D])  = d im(D).  

(2): Notice tha t  CD(a) = CD(F(a)) = CD(F(x)) = Ci)(x). We show tha t  

for all w �9 D, [a, w] �9 Ix, D],  the leInlna follows from symnletry.  Now by (1), 

w = c +  ~x,d], for some c �9 CD(a) and d �9 D. Thus,  [a,w] - [a ,c+ ~x,d H = 

{~a, Ix, d~ .  But,  by the Jacobi  identity, Ia, x, 4 + I x, d, a] + Id, a, x] = 0. Since 

~a, x] = 0, we get tha t  la, w] = Ia, Ix, d]] = ld. a, x~ �9 ~x, D~ as asserted. II 

2. T h e  p r o o f  o f  t h e  M a i n  T h e o r e m  and  L e m m a  1 

We continue the notat ion and hypotheses of Section 1. In addition, unless 

otherwise specified, we assume here tha t  deg(D)  = 3. We s tar t  with 

(2.1):  Let a c G",  g and let H* =Ca. (a*) .  I f la,  D I N H  # ~, then [a* I = 3 .  

Proof: Let ~a, d~ E Ia, D] Cl H.  Let b = a ~a'd]-'. Then 

m ~ ( A ) = ( A - c ) ( A - b ) ( A - a ) ,  for s o m e c c G  

and, by 2.2.1 (ahead),  there exists v E G such tha t  c" = b, b ~' = a and a" = c. 

Note tha t  a* = b* and hencec"  = (a*) < = (b*) v" = a*. Thus,  a* = b* = c*. 

But  cba E F, so (a*) 3 = c*b'a" = 1", and the l emma holds. II 
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(2.2):  Let a �9 G" .  N, Ia, x] �9 ia, D] • and set b := a |~ '~i- ' ,  c :=  u ( a ) a - ' b - ' .  

Then 

(1) There exists 1 r v �9 G such that v 3 �9 F(a),  c" = b, b ~' = a, a" = c and 

v - l l a ,  x] �9 f ( a ) .  

(2) If  (a*) ~M" �9 (a*), then [a,x] ~ induces an automorphism of  order 1 or 3 

on (a*); and i l ia ,  x]* �9 Co.(a*) ,  then (a*) 3 = 1". 

Proof: Since b �9 F(a) (see 1.3 and 1.9), there exists c �9 D such that  m~(~) = 

()~ - c)()~ - b)()~ - a). Thus  c = v ( a ) a - l b  - ' .  If Ia, bl 7k O, then take v := Ia, b], 

and (1) holds by 1.11. So suppose Ia, b] = 0. Let v :=  la, x]. Now b is another  

root of m~(A) in F(a) ,  so b "-~ is also such a root and necessarily b v-~ = c and 
CV 1 ~ -  - a. Then,  since a ''3 a, v 3 �9 F(a).  This shows (I). 

Assume the hypothesis of (2). Notice that  by (1), [a,x]* induces an anto- 

morphism of order 1 or 3 on (a*) and, if Ia, x]* induces an au tomorphism of 

order 1 on (a*), then, by 2.1, (a*) 3 = 1". II 

(2.3) TttEOREM: Let a*,y* �9 G* 

(a*) k, with 1 <_ k < [a" I. Then 

(1) tlCk r 1, then ((a*)k-1) I~'vl" 

(2) 

(3) 
(4) 
(r,) 

with y" E NG.( (a ' ) ) .  Suppose y" a ' (y*)  -1 = 

= ( ( a ' ) k - l )  '~" e ( ( a ' ) ~ - ' ) .  

I f  there exists a prime p # 3 such that la*l = pe and [Y*I = pro, then 

y" c Ca. (a ' ) .  
I f  la*l = p is a prime, then (y*)3 C Ce- (a*). 

I f  gcd(lY*l,3) = l, then y* E Ca.(a*) .  

I f g c d ( l a ' l , 3 )  = 1, then (y.)3 �9 Ca.(a*).  

Proof: Of course we may assume that  

(i) y" q! Ca.(a') 

and hence [a, y] :/: 0 and 

(ii) ( a ' )  k - I  # 1". 

Next, Iy, al = (9ag - la  -1 - 1)ay. Note now that  ( y a g - l a - 1 )  * = (a*) k - l ,  so 

since ( y a y - l a  - l  - 1) centralizes y a y - l a  -1, in G, ( y a y - l a  -1 - 1)* centralizes 

( y a y - l a - 1 )  * = (a*) k-1 and it follows that  ((a*)k-J)  ~'.~1" = ((a*)k-1) .v'. This 

shows (1). 

Assume the hypothesis of (2). If a is inseparable over F,  then la*l = 3, a 

contradiction.  Thus eL is separable over F.  Since a k-I  ~/7,  Ia, D 1 = Ia k - l ,  D],  

by 1.12. So Ia, y] = Ia k - l ,  z], for some z E D and then, by 2.2.2, either la, y]* = 
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[a k - l , z ] ,  ind ,ces  an automorphism of order 3 on {(a*)k-~). or ( a ' ) (k - l )a  = 1". 

In the first case, since Ia..q~" acts like 9 ~ on ((r  this implies tha t  3 divides 

Iv'l, contradict ing p r 3. h, the second case, since p r 3, we get that  (a ' )~-1  = 

1*, but 1 < k < [a*[, a contradiction. 

Assume now that  la*l = p is a prime. Notice that  (1) implies that  

, D  ~I" 
( i i i )  a = ( a ' )  '~ . 

By 2.2.2 and (i). y" induces an automorphisnl  of order 3 on (a ' )  a.s asserted. 

For the proof of (4) and (5) we may assume without loss that  Ia ' l  = I /  and 

[9"I = r"', tbr some primes p and r. If r = p, lhen both in (4) and (5). r = p r 3, 

so by (2). 9 ~ E- ('c;" (a") contradicting (i). ltence we may assume that  r ~- p. Thus 

in both cases by (3). (.q.)a c Co. (~, ((a ' ))) .  By' [2], 24.3. p. 113, (f):~ E Ca. (a') 
and (5) is prow'& If. in addition, r r 3, then 9" s Cc . (a ' )  and (4) is proved. 

l 

(2.4) COROLI.aRV: (1) Let .s'.t" q Inv(G ' )  with t" r s ' .  Then s't" E Inv (G ' ) .  

(2) I nv (G ' )  c_ O.,.(G'). 

Proof: Supp . se  [.s'/ '[ > 2 and set a := .st. Since [a'l > 2, 

r c Nc.((a'))", (:c,.(a') 

and It'I = 2. contradict ing 2.3.4. This shows part  (1) of the corollary. Part  (2) 

is immediate  from part. (1). I 

We now prove the Main Theorem. Part  (1) of tt,e Main Theorem is 2.3.4 

and 2.3.5. Part  (2) of the Main Theorem is 2.4.1. Note now that  for any N < 

M,aG. G /M satisfies all our hypotheses for G* and hence, by 2.4.2. Inv(G/M) C_ 

O.,(G/M). This implies that  for any normal subgroup M" < G'. h l v ( G ' / M  ~ c_ 

O.e(G'/M') .  In particular, this holds for M '  = O,(G') ,  so (; ' /02(G*) has odd 

order and this completes the proof of the Main Theorem. I 

We now prove Lemma 1. So here we drop the assumption that  deg(D) = 3 

and the assumption that  G" is finite. Let a E G. with a" E Z(G') .  Then by 

Wedderburn 's  Factorization Theoreln (see [10] or Theorem 0.4, p. 181 in [5]). 

m,(A) = (A- d m ) ( A - d  .... j ) . . - ( A - d l ) ,  where m = deg(a), dl = a and d, 

are conjugates o f ,  in G. 1 < i < m. Thus d~ are col,jugates of a" il, G ' .  so 

since a" E Z(G') .  d~ a" for all i. Since ' F • 1" = l-I,=,, d, E ( a " ) "  = and, as 

m] deg(D),  Lemma 1 holds. I 



380 L. ROWEN AND Y. SEGEV Isr. J. Math. 

The  ' in par t icular '  par t  of L e m m a  1 is immedia te  since, if N _< 31 < G is 

such tha t  M / N  = [H,H] ,  then M satisfies the hypotheses of L e m m a  1 and 

G / M  ~- H/{H,  H] is abelain. II 

References  

[1] S. Amitsur, Rational identities and application to algebra and geometry, Journal 
of Algebra 3 (1966), 304-359. 

[2] M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. 

[3] D. E. Halle and L. H. Rowen, Factorization of polynomials over division algebras, 
Algebra Colloquium 2 (1995), 145-156. 

[4] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, "Nauka" 
Publishers, Moscow, 1991 (English translation: "Pure and Applied Mathematics" 
series, N139, Academic Press, New York, 1993). 

[5] L. H. Rowen, Wedderburn's method and algebraic elements of simple artinian 

rings, Contemporary Mathematics 124 (1992), 179-202. 

[6! L. H. Rowen, Elements of degree 3 and 4 in division algebras, Contemporary 
Mathematics 184 (1995), 405-410. 

[7] W. R. Scott, Group Theory, Prentice-Hall, Engelwood Hills, New Jersey, 1964. 

[8] Y. Segev, On fl'nite homomorphic images of the multipIicative group of a division 
algebra, Annals of Mathematics, to appear. 

[9] Y. Segev and G. M. Seitz, Anisotropic groups of type An and the commuting graph 
of finite simple groups, submitted. 

[10] J. H. M. Wedderburn, On division algebras, Transactions of the American 
Mathematical Society 22 (1921), 129-135. 


